If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2-41s=0
a = 1; b = -41; c = 0;
Δ = b2-4ac
Δ = -412-4·1·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-41}{2*1}=\frac{0}{2} =0 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+41}{2*1}=\frac{82}{2} =41 $
| 51+v-35+v-24=180 | | +18+12x=90 | | −12x=38 | | (x-2)=2340 | | (n-2)=2340 | | 3x+x+10=6x | | 36-x+4x=90 | | G(x2)=4x+5 | | 3x+5=4x–10 | | c-4=28 | | 18y-7=17 | | 5x^2-2=112 | | 14x=0.5 | | ⅚(18x-54=) | | 4(x–1)–7=4+8x+5 | | -6(k-29)=9k+69 | | 3x+1=2x+9| | | y/2+2=8 | | X(x3)+15=36 | | 3.2^{x+3}=192.3^{3-x} | | (3x+24)+(x-5)+(8x-40)=180° | | 14x=37x | | 2x6=-6x+2 | | 2(4-x)-2=10(2x+1) | | 2/5t=12/32 | | 10n+10n+6n+6n=360 | | 10n+6n=180 | | (13x+11x)/5=10 | | 6x^2-12x-220=0 | | x-(3/4)=-2/3 | | 1.01x1.01=0 | | m−7=23 |